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Preface

The work discussed in this paper is one of the products of several years of basic research
to improve the computational efliciency of methods designed to evaluate the reliability,

safety, or vulnerability of complex systems.

When this research was initiated, state-of-the-art methods could only produce vague
or “soft” estimates for the statistical performance of large discrete systems. In high-risk
situations, such estimates lead to unacceptable decision errors, and more accurate and
definitive procedures were required. Unfortunately, the quest for greater accuracy and
confidence was accompanied with an enormous growth in computational requirements,

and this placed most complex systems beyond the reach of methods current at that time.

Given that reliability, safety, and vulnerability are usually expressed as a probability,
our first concern was to develop improved probability computation algorithms. This gave
rise to the LII method [1] which, for fault trees, accurately and efliciently computes the
probability of the top event from the tree cut sets and their probabilities. Unlike the
Inclusion/Exclusion method or other methods currently available, ¥II produces absolute
upper and lower bounds in computation time which is polynomial in the number of cut
sets and basic events. As the allocated computer time is increased, these bounds approach

each other to any desired accuracy.

But the problem of finding the cut sets is itself computationally complex and, again,
existing methods were inadequate to perform this step for systems consisting of more than

100 components.

In this report, we present a new and efficient algorithm, called SHORTCUT, for ac-
complishing this cut set computation process. Designed to address both coherent and
noncoherent fault trees with an arbitrary proportion of common-cause events, it consists

of several modules, each of which is discussed in detail in this report.

Whereas the development of X1l and its subalgorithms was supported by the Lawrence
Livermore National Laboratory (LLNL), the SHORTCUT work discussed in this report
was wholly supported by the Nuclear Regulatory Commission, and was directed by Dr.
Dale M. Rasmussen, of the Division of Research.
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A FAST BOTTOM-UP ALGORITHM
FOR COMPUTING THE CUT SETS OF
NONCOHERENT FAULT TREES

ABSTRACT

An efficient procedure for finding the cut sets of large fault trees has been devel-
oped. Designed to address coherent or noncoherent systems, dependent events, shared
or common-cause events, the method—called SHORTCUT—is based on a fast algorithm
for transforming a noncoherent tree into a quasi-coherent tree (COHERE), and on a new
algorithm for reducing cut sets (SUBSET). To assure sufficient clarity and precision, the
procedure is discussed in the language of simple sets, which is also developed in this report.
Although the new method has not yet been fully implemented on the computer, we report

theoretical worst-case estimates of its computational complexity.
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Chapter 1

INTRODUCTION

The evaluation of overall system vulnerability or reliability is typically dome in two
major steps: finding the system failure states (cut sets), and computing the probability of

system failure (vulnerability), as shown in Figure 1.

FAILURE
SYSTEM FIND SYSTEM STATES COMPUTE RELIABLLATY
— | FAILURE > SYSTEM NTERV
MODEL STATES {S;, ..., S ) PROBABILITY INTERVAL
1 m OF FAILURE (\'ARY)]

Figure 1. Two principal operations in evaluating system vulnerability or reliability.

A failure state is a combination of component or subsystem states which is sufficient—
but not necessary—for system failure. When fault trees are used, each component or
subsystem is assumed to be in only one of two states: failed or working. Failure states are

also called cut sets, or minimal cut sets if no further Boolean reductions are possible.

Consider thus the family & = {Sj, ..., S} of minimal cut sets of a fault tree. Then
the probability of system failure is

V=PS orSs..., or Sp) , (1)

the probability that the system is either in state S, or in state S, ..., or in state S,.
Mathematically,

V:p((j s,-) , @)

1=1

the probability of the union of all the system cut sets, Each cut set S; is a combination

(conjunction) of component states which may be set-theoretically expressed as an inter-
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section S; = n;.‘;ls,-,-, where each S;; represents the state of component j in the system

failure state i. Therefore,

V=P

s

r'] Sij . (3)
j=1

1

1

Unfortunately, all the minimal cut sets of a tree can rarely be computed in practice (there
are potentially 2%/2 cut sets for a system with n components), and only a subcollection
§'={85},..., 5 ,} CS can usually be found. Only a lower bound V = P (UE’;'IS:-) <V
for V can thus be computed. But if we consider the dual fault tree [2], which is simply the
original tree with its basic events complemented and its OR gates and AND gates replaced
by AND gates and OR gates, respectively, then a lower bound V2 for the dual tree can be
found in a similar manner. But the top event of the dual tree is the complement of that
of the original tree, thus VP =1 -V, 1 - vl > V, and

! n

v=p(Jsh]<vsi-p(JsPy)=7 , (@)
=1 =]
where {(SP)': i =1,...,m"} = (8P), a subcollection of minimal cut sets of the dual

tree.

We have thus obtained an interval [V, V] which is known to contain the correct value
of system vulnerability. The choice of §' and (§P)' is determined by iterating between
Step I and Step II in Figure 1 until a sufficiently tight interval for V is found, or until

allocated computer resources are exceeded.

In a previous report (1], a fast method for computing the second operation (Equa-
tions 2-4) was presented. This method is particularly useful when very large trees are
evaluated whose cut sets do not include many singletons or doubletons, because standard
methods such as the Min Cut Upper Bound [3] are inaccurate and unpredictable for such

trees, particularly if some basic events have a high probability of occurrence.

The present report is confined to the first operation of Figure 1, and we discuss a new
and fast method for finding the cut sets of large noncoherent fault trees with an arbitrary

proportion of shared or common-cause basic events. The report is basically structured as

4



follows.

We start with some mathematical preliminaries in Chapter 2, where we introduce
‘simple sets’ and present some simple facts about such sets. We also formally define fault
trees in that chapter, and we discuss leveled and noncoherent fault trees, and their quasi-

coherent versions.

In Chapter 3, we present computational methods for producing leveled, quasi-coherent
versions of fault trees. We also discuss the SUBSET algorithm, which reduces a collection of
simple sets to a minimal (‘reduced’) collection, and the TRUNC algorithm, which truncates

simple sets in accordance with given rules.

Finally, we present the overall flowchart of the SHORTCUT algorithm, and we report

a theoretical estimate of its computational complexity.






Chapter 2

MATHEMATICAL PRELIMINARIES

We first review some basic mathematical concepts associated with simple sets. Then

we develop the definitions required for a formal discussion of fault trees.

2.1 Simple Sets

Our methods are based on the concept of a simple set [1], and we now review the

definitions and propositions required for our discussion.

Consider a set A = {0, 1, —, 0} of four Boolean symbols (the alphabet) whose meanings

are defined as follows:

: False
1: True
—: Don’t care

@: Empty symbol.

Consider next a string S™ = (e1,...,€j,...,€en),¢; € A,j=1,...,n. Then S" may be
used to denote the product subset X;=1Aj C A™ where

A; ={0} , if =0 |,
= {1} , if e5=1 |,
0, ife=0 . ®)
={0,1} , i ej=- .

We define such sets S™ as simple sets of dimension n. The set of all such sets is S =
{S" =(eir..-»€j,...,en): € € A, j=1,...,n}, and the simple set Q" = (—, ..., —,)

is the universal set (every simple set is a subset of this set).

The symbols e; of a simple set are called the entries or coordinate values of the simple

set.



An atomic simple set (an atom) is a simple set A™ = (ey, ... €;, ..., €5), Where ¢; €
{0,1} C 4,7 =1,...,n. Atoms are thus singletons consisting of a single binary string
and constitute the indivisible points from which simple sets are constructed. Simple sets

are thus sets in the ordinary sense, whose points are binary strings or atoms.

Simple sets may also be viewed as product subsets of {0, 1}", the set of all Boolean
strings of length n. For convenience, and unless the dimension n of sets is of particular

importance, we shall drop the superscript n from future discussions.

A simple set is empty (or null) if at least one of its entries e; equals the null symbol 0.
Mathematically,

S"=0iff 3j 3¢ =0 . (6)

An elementary simple set is a nonempty simple set which only has one non-don’t care

coordinate. Elementary simple sets are thus of the form

En=(_1—7'“73]'7"'1",—7"'7_11) ’ (7)
where e; € {0, 1} for some single j.

The projection of a simple set S™ onto the jth coordinate is the elementary simple set

Ef =(— = s €] sy —a) (8)

where ef" is the jth coordinate value of S™.

Observe that simple sets are a natural representation for Boolean expressions of literals.
If we have literals or basic events E;, E;j, ..., E,, for instance, and if we denote the
logical AND, OR, and NOT operations by A, V, and |, respectively, the conjunction E; A
E17 A Ejg would be represented as the simple set § = (—, 12, ..., 137, ..., 019, .- -, —a).

Disjunctions and complementations (NOTs) will be discussed later.
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2.1.1 SOME SIMPLE BUT IMPORTANT FACTS ABOUT SIMPLE SETS

Consider three simple sets: 4 = (ef, vy 63-4, ey e B= (e?, ceey ef, ceey ef), and

C=(ef,...,ef,...,eg), e;-4 € A, ef € A, ef € A Let J ={5: j=1,...,n}, the

set of all coordinates.

2.1.1.1 Dominations

DEFINITION:

B dominates A in coordinate j, written B dom(j)A4, iff

(ef =)V =0 \/(ef =¢f) . (9)

Informally, this condition may be paraphrased by the statement, “B dominates A in
coordinate j if, and only if, the jth coordinate of B is a don’t care, OR the jth coordinate
of A in the empty symbol, OR the jth coordinates of A and B are equal.”

Similarly, B strictly dominates A in coordinate j, written B DOM(5)A, iff

(ef=0/\ej39é0)V(e;-‘7é—/\ejB=—) ) (10)

The sets of dominating coordinates of B over A are defined as the sets dom(B/4) =
{j: B dom(j)A}, for ordinary domination, and DOM(B/A) = {j: B DOM(j)A}, for

strict domination.
2.1.1.2 Complements

The complement of a coordinate entry e; is denoted by €;. Clearly, €; = 1 iff ¢; = 0,
and €; = — iff e; = 0.

For elementary simple sets (hence, for projections) E = (—, ..., ¢j, ..., —), the com-
plement Eof Eis E = (—, ..., €, ..., —), the elementary simple set with its non-don’t

care coordinate equal to the complement of that of E. For projections Ef,

9



E' =(-,—,¢4...,) . (11)
Complements of more general sets are discussed in Section 2.1.1.7.
2.1.1.3 Equalities

Simple sets are equal iff all their coordinates are equal or if they both have one empty

symbol in at least one coordinate, in which case they are both empty. Formally,

A=Biﬁ(A=0/\B=0)V((e;-‘=ef’) ., i=1,...,n) (12)

2.1.1.4 Intersections

The intersection of two simple sets A and B is the simple set C = (ef, ceny €7

Cyeees )
where eJc = min{ef, eJ-B}, and
min{@, 0} = min{@, e;} = min{e;, 0} = min{0, 1} = min{1,0} =0
min{0, —} = min{—, 0} = min{0, 0} =0
min{l, —} = min{—, 1} = min{1, 1} =1, and min{—, -} =- . (13)

Observe that the intersection operation is performed coordinatewise, by computing the
minimum of the two coordinate values, one coordinate at a time. This convenient formula-
tion does not hold in the computation of unions, differences, and complements, as we show
in the following subsections. Note also, that any simple set A is equal to the intersection

of all its n projections Ef Thus

obviously,

B(4=0 ifi(3j € J) > (f=0\/ef=0\/ef=2F) . (14)

10



2.1.1.5 Unions

In contrast to intersections, there is no succinct componentwise representation of the
union U2, A; of m simple sets A; (and the disjunction of expressions which it represents).
In general, the union of two or more simple sets cannot be represented as a single simple
set. To see this, consider the simple example of two sets 4 =(0,1,1) and B = (1,0, —).
Then A is an atom, and B has two atoms, B; = (1, 0, 1) and B; = (1, 0, 0). While B;UB;
is thus a simple set (B), AU B cannot be represented as a simple set. This occurs because
sets By and B, are the same except in one coordinate, where they complement each other,
and this coordinate turns into a don’t care upon unioning. But this is not the case with
sets A and B. In general, therefore, there is no coordinatewise operation which allows
the representation of a union of sets as a single set. Consequently, we represent AU B as
U{A, B}. More generally, we shall represent the union of a collection {4;: i=1,..., m}

of sets as

U A or U{A.‘:i:l,...,m} . (15)
1=1 '

2.1.1.6 Subsets

A is a subset of B iff B dominates A in all coordinates. Mathematically,

ACB iff dom(B/A)=J |, (16)
and

AgB iff (dom(B/A)=J) A(3j > B DOM(j)4) , (17)
the latter representing the case where A is a strict subset of B.

As a simple example, consider sets A = (0, 1, 1) and B = (0, —, 1). Then dom(B/A) =
{1, 2, 3} and DOM(B/A) = {2}, and AgB. The singleton (0, 0, 1) is in B but not in A.

11



2.1.1.7 Differences

The difference of B over A is the set of binary strings in B not in A. Thus,

B-A=|\J{S5;=B() E;: i € DOM(B/A)} . (18)

Since this may not be obvious, we give a simple example. Let A = (1, —, —,1, —, —, 1)
and B=(—,1, —, —, 1, —, —, ). Then

B-A=U{(0, 1,_a-, 1’ —1_,)7 (_’1,—10’1’ _,—)’ (_’17—7—’ 1’_’0)}’

each set inside the brackets resulting from the strict domination of B over A in a corre-
sponding coordinate (DOM(B/A) = {1, 4, 7}). Complements of elementary simple sets
were discussed in Section 2.1.1.2. For a general simple set A, the complement A of A is

simply the difference {2 — A, the set of points in the universe {2 not in A.

2.2 Fault Trees

Fault trees are structures which operate on simple sets. A careful definition of fault
trees is required to discuss methods which we have developed to exploit their structure.

In our discussion, we use the words “simple set” and “expression” interchangeably.
s P p 4

2.2.1 BOOLEAN GATES

Starting with three Boolean operations + (OR), - (AND), and | (NOT), a gate is a
triple g = (I, O, B), where

I is the set of input variables (“input terminals”) of g
O is the output variable (“output terminal”) of g
B € {+, -, ]} is the Boolean operation of g.

Gate variables I and O range over Boolean expressions in Disjunctive Normal Form (DNF),

or unions of simple sets, and O = B(I).

12



When B = +, then g is an OR gate, and O = Vyeyv. When B = -, g is an AND
gate, and O = A,eyv. When B =], g is a NOT gate, both I and O are singletons, and
O =]1I, the complement of input variable I, which we occasionally denote by I. In specific
instantiations of a gate g, B does not operate abstractly on I, of course, but on the specific

expressions or simple sets associated with terminals in I.

2.2.2 GATE RELATIONS AND INTERCONNECTIONS

Consider a collection of
OR gates Gt = {g = (I}, 0, +i), i=1,2,...,77} ,

AND gates G.={g_‘;'=<IJ:7 0_;7 i) i=1,2,...,77} ,
and

NOT gates G = {g} = (1}, 0}, 1s), k=1,2,...,1}

Let 0t = U;-';O;", the set of all OR gate outputs, It = U;-';I‘-'*, the set of all OR gate
inputs, and similarly for 0", I', 01, and I, andlet 0 =0t UO UOl and I = I UT U I).

A gate g relates its inputs I, to its outputs O, and, neglecting the particular structure
of the gate operation, this may be denoted by a relation, R; C I x O. The set G of all
gates thus relates inputs to outputs via a gate relation Rg C I x O, where (i, 0) € Rg iff
t € Iis the input of some gate g € G whose output is 0 € O. This relation will be used

below when we discuss interconnections in fault trees.

DEFINITION

An Interconnection structure on G =G+ UG UGlisarelation I COUIxOU I
such that (z, y) € T iff z is connected to y.

If an “interconnection” simply means that terminals are physically connected together,
or variables are identified, then (z, y) € Ziffz = y, in which case (z,y) € Tiff(y, z) € T.
This is exclusively the case in this report. If (z,y) € Z, z is conventionally called the

predecessor of y and y is called the successor of x.

For most systems, such as fault trees, 7 must satisfy certain constraints and has addi-

tional properties. These are specified in the next section.

13



2.23 CONSTRAINTS ON INTERCONNECTIONS

In general, not every gate output terminal may be connected to every input terminal,
particularly to its own inputs. Since 7 is a set of interconnection pairs, such constraints may
be easily expressed as constraint sets which can be subtracted from the set of allowable
interconnections. If inverting gates (]) may not connect to other inverting gates, for

instance, O x I' may be removed, and the relation becomes

IcouIxoulI-0lxIl . (19)

Two principal constraints that must be satisfied in fault trees are intended to prevent
gate feedback, where the output of a gate is connected directly to one of its inputs, and
gale feedforward, where an input of a gate is connected directly to its output. These
constraints, denoted by C; and C; are easily represented by subtracting from Z the two
sets CFB = Jyee{(z, y): = € Og,y € I} and CFF = Uy {(z, y): z € Iy, y € Og},

respectively. Another constraint (C3) is that no gate outputs may be connected together

o0x0(I=0 . (20)

Informally, there does not exist any pair (O;, O2) € O x O that is also an interconnection
pair, i.e., (01, O2) € I. Another constraint (Cy) requires that I, together with the gate
relation R, be acyclic, since trees contain no cycles. Recall that a relation R is acyclic if
there does not exist a sequence of pairs ((z;, £3), ..., (Zk, 1)) all of which are in R. We
define an interconnection T on G to be acyclic if TU R is an acyclic relation. In terms of
terminals, T on G is acyclic if no terminal is reachable from itself, i.e., there does not exist
a sequence ((z3, £2), ..., (Zk, Zh41)) of pairs (z4, zi+1) € TU Rg such that z44; = z3.
We also require constraint Cs that Rp leave no input or output variable isolated. Each
variable must have at least one successor or one predecessor under Ry and we then say

that Rp is connecting.

Finally, constraint Cg requires that there be one and only one variable which has no

successor under Rp. (This variable will be called the top variable (top event)).

14



2.24 FAULT TREES

Using the machinery developed in the previous sections, we now have a formal frame-
work for a precise discussion of fault trees. We start with some important definitions.

DEFINITION

Consider a finite set G of gates with gate relation R¢, and an interconnection structure
Z on G. A Fault Tree is a system F = (G, Rr), where Rr = I|JR¢ and satisfies the
interconnection constraints C; through Cs. When R satisfies these constraints, it is called
a Fault Tree Relation.

The single variable which has no successor under R is called the top variable and this
variable is the ouput of the top gate. All variables which have no predecessors under Rp
are called basic variables.

The top variable T of a fault tree F is a Boolean indicator of the overall state of the
system represented by F':

1, if the system is in the functioning state

o, if it is in the failed state.

In a fault tree F', basic variables (called basic events) represent the components of the
system represented by F', and a principal issue is to determine the combinations of binary
component states which are sufficient (but not necessary) for system failure. Component
states are represented by a component state vector E = (Ey, ..., Ej, ..., E,), where

E { 1 if component j is in the functioning state
J' ==

0 if component j is in the failed state.

These are called the cut sets of F, and are obtained by solving a special function defined

as follows.
DEFINITION
Let E = (E,, ..., Ej, ..., E,) be the state vector for the basic variables of a fault tree

F with top variable T. Then a structure function for F is a mapping ¢p: {0, 1}* — {0, 1}
such that T = ¢p(F) is valid. In other words, T = ¢p(E) = 1 iff E is a combination of

15



component states for which the system is functioning, and conversely for T = ¢p(E)
=0 [3]. The set Cr = {E: ¢p(FE) = 0} is the set of cut sets of F.

2.2.4.1 Leveled fault trees

An important special case of a fault tree is a Leveled Fault Tree, a tree which has been
partitioned into levels (sets) of gates of the same type, in accordance with the interconnec-
tion structure Z. In such trees, the outputs of OR gates may be connected only to AND
gate inputs or NOT gate inputs, and AND gate outputs may connect only to OR gate
inputs or NOT gate inputs. Furthermore, NOT gate outputs may not connect to NOT
gate inputs, but may be connected to AND or OR gate inputs.

Such trees have a hierarchical structure where the inputs of gates at a given level may
be connected only to outputs of gates at a lower level, and may feed only gates at a higher
level in the hierarchy. To define such trees, we need the notion of interconnection sets of

a fault tree.

The interconnection structure Z induces a mapping F~1: 26 — 2C where 2€ is the set
of subsets of G, as follows. If 4; € 2C (i.e., Ay C G), F~1(A;) is the set of gates g whose
outputs O, are connected to an input of at least one gate in A; under the interconnection
structure Z. Thus, F~1(4,) = 4 € 2CG for some A; € 2Y. By induction, we can
thus define F~1.F~1(A;) = F~%(4;) = F~1(A3) = A3 € 2€, and F~(m*)(4;) = A, €
2C¢. Since fault trees are acyclic, there exists some minimal number m = L such that
F~(m=k)(A;) = 0 for m > k > 1. Starting from the top gate set {gr} = AL, we can
thus construct a collection of distinct nonempty sets Sy = {4;, ..., A¢;, ..., AL} whose
union Uf‘zlAl = G, where Ay = F~(I-0(A}), and L is the minimal number. We call Sy
the interconnection sets of F = (G, Rr). To capture the notion of “level,” we need to
find a partition of G whose elements are gates of the same type, and which respects the

interconnection structure I via the interconnection mapping F~1.
DEFINITION

Consider a fault tree F = (G, Rr) whose OR, AND, and NOT gates are G*,G",
and G, respectively, and whose interconnection sets are S; = {A1, ..., 4¢, ..., Ar}. A
leveling of F is a partition L = {Gy: £=1, ..., L} of G whose elements G, satisfy the
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following conditions for all £ =1, ..., L:

(6ec6t N4 V (Gece N 4) V (6ec6! ) 4)

(Gec6*) = (61 c &)\ (Gt c 6

(G¢ c G') = (G @)\ (G,+l C 01)

(G¢ c G1) = (G @)\ (G,+1 c G') . (21)

We now define what we mean by a leveled fault tree.
DEFINITION

Consider a fault tree FF = (G, RF) which has a leveling Lr = {Gy: £=1, ..., L}.
Then the structure LF = (G, Rp, L), consisting of F together with the leveling Lp, is
called a Leveled Fault Tree.

Consistent with earlier conventions, we define G as the bottom levelof LF, G = {g1}
the top level of LF, and Gy as the ¢th level of LF. Recall that the inputs of G; are called
the basic variables of LF' and the output of g7 is called the top variable of LF.

2.2.5 LEVELING A FAULT TREE

Without restructuring, many fault trees may not have any levelings. Other fault trees
may have multiple levelings. Using the previous two definitions, and other concepts in-
troduced in Section 2.2.4, finding a leveling for a tree is usually straightforward, and we
do not develop an algorithm for this operation here. We should note, however, that the
inability to level a tree arises because several gates of different types may feed a given gate,
or the output of a given gate may be connected to the inputs of several gates of different
types. In these circumstances, such “multiple output” gates may be split into multiple
gates, one gate for each type of gate connected to the output of the original gate. Such
restructuring may not lead to a leveled tree with a minimum number of gates, but it will
produce at least one leveling. Since the computational burden to compute cut sets is only a
weak function of the number of gates, no significant computational penalty is incurred. As

an example, Figure 2 illustrates a leveled fault tree with five levels. Note that fault trees
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need not be leveled for our methods to apply, only that leveled fault trees are generally
easier to visualize and process.

T(Top event)
L 0
Level S
Iy '2
é, RO DI ":;..I, ,"1 p——— — =
§ o f .\\ ule 5 G4z / .\ Level 4
{ } 4} H=G { |
s |
3 g
: ! 13
; g“ ; Level
; }
}
g }
; s, G, ! Gy
§ g 9 9
§ A A + 2 ; 2 ‘? + : Level 2
| )
! F { F
H 1 2
i 1 :
: 3
s Submodule 1 o \ ! G2 / o
H
; ) : I 1 Level 1
; ]
; i
H 2
§ i
H
¢ H
i Eg| B E, E E, E; { Ey Es Level 0
§ ; (Basic events)
: i

Figure 2. A noncoherent leveled tree with five levels, modules, and submodules.

2.2.6 NONCOHERENT FAULT TREES

A fault tree is noncoherent if it is not coherent. To define coherence, we need some

preliminary concepts.

DEFINITION

A structure function ¢ is indifferent to a component state E; iff (VE € {0, 1}")

(d> (E|E,-=;) = ¢ (EIE,'=0)) where E|g,__ is the component state vector E with its jth
component set to z € {0, 1}.
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DEFINITION

A structure function ¢ is increasing iff (VE € {0, 1}") (¢ (E|EJ.=1) > ¢ (E|E,=o) , ] =

1,2,..., n). We now define what we mean by a coherent fault tree.
DEFINITION
A fault tree F' with structure function ¢ is coherent iff

1. ¢rF is not indifferent to any component state E;

2. ¢F is increasing.

Although every noncoherent fault tree must have at least one complemented basic event
or must contain at least one NOT gate, or both, the converse is not necessarily true. It is
easy to construct a fault tree which has complemented basic events and NOT gates, and
yet is coherent. Whether a given fault tree is coherent or not cannot always be determined
before computing all its cut sets, except when it contains no NOT gates or complemented

basic events. Then it is surely coherent.

Standard methods for computing the cut sets of noncoherent fault trees—or of those
suspected of being noncoherent—use de Morgan’s Theorem to operate on the cut sets
themselves by complementing these as they are derived from the tree [4-8]. But there are
potentially 2*/2 such cut sets, and thus O(2™) work may be required to deal with the

noncoherent aspects of trees, and this is not practical.

)

To remove difficulties associated with noncoherence, it suffices to transform a tree into
a quasi-coherent tree, one that contains only AND gates and OR gates. Such trees may
obviously contain complemented basic events and, if none of these events occur in both
the complemented and noncomplemented form, the quasi-coherent tree can be further
transformed into a fully coherent tree with a simple redefinition of basic variables. In
contrast to methods which operate on cut sets, our transformation method operates on
the gates of a fault tree and may occasionally require that new gates be added to the
original tree. As we shall see in the next section, however, the size of the resulting quasi-
coherent tree will never exceed twice the size of the original tree. Since the amount of work
required to compute cut sets by our method grows very slowly as the number of gates is

increased, no significant increase in computational work i¢ required.
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2.2.7 QUASI-COHERENT VERSIONS: THE COHERE ALGORITHM

The COHERE algorithm reduces noncoherent fault trees to one of their quasi-coherent
versions. It is a top-down reduction procedure which uses de Morgan’s Theorem [2] itera-
tively until all NOT operations have been transferred to the bottom level of the tree, where
they appear as complements on the basic events. Every NAND combination is replaced
by an OR gate with complemented inputs, and every NOR gate combination is replaced
by an AND gate with complemented inputs. The NOR combination (g22, g31) of Figure 2,

for instance, is replaced by an AND gate with two complemented inputs E5 and F;.

The process of replacing inverted gates by their duals [2], and of inverting their inputs,

continues down the tree until the bottom of the tree is reached.

A slight complication arises when these inverted or complemented outputs are also
used as uncomplemented inputs to other gates, as F] is an input to both g2 and g23. Then
the reduction process produces two gates, one whose output is the original output, and the
dual gate whose output is the complement of the original output; unless the complemented
output (event) already appears in the complemented form elsewhere in the tree, in which

9

case the complemented events.are simply “connected together,” since they are identical.

Referring again to Figure 2, the reduction procedure replaces g,2 and g3; with an AND
gate, one of whose inputs is Fi. But F, is an input to gz3. Thus, the reduced tree must
generate both F; and Fi and this can be done only if both g;; and its dual gﬁ are retained,

as shown in the reduced tree of Figure 3.

At first sight, this procedure might appear to produce an explosive growth of gates,
but it does not. In the worst case, the quasi-coherent version has at most twice as many
gates as the original tree since each inversion creates at most two gates at the next lower
level. Observe that, when a shared event requires complementation by several of its sharing
gates (event F] is shared by two gates g2 and g23, for instance) only one new gate must
be added since the event is now available in both forms. If gate g23 in Figure 2 were also
preceded by an inverting gate, for instance, no new gate would be required by g;3 since

F; would already be available from gﬁ.

Because the effort required to compute cut sets with our method is only a weak poly-

nomial function of the number of gates in the fault tree, doubling the number of gates
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Figure 3. Quasi-coherent version of Figure 2.

does not result in significant increase in work, and the computational advantages of this

method over other methods [4,5,9] are significant.

Another significant computational advantage of COHERE will become apparent when
it is combined with TII [1], a method for computing the overall system reliability using
disjointing procedures. Cut sets which include complemented basic events are often disjoint
from other cut sets, and these require no further processing by subsequent disjointing

procedures, such as LII, thereby reducing even further the overall work required.

We conclude this section with a flowchart of the COHERE algorithm (Figure 4). Recall
that, for any set 4 of gates, F~1(A) is the set of gates each of whose output connects to

an input of at least one gate in A, and similarly for the forward relation F. Note that
F.-F~1{g} # {g} necessarily.
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Chapter 3
COMPUTING THE CUT SETS OF FAULT TREES:

The SHORTCUT Algorithm

3.1 Introduction

Even when they are very reliable, complex systems usually have an enormous number
of failure states. Simple two-state n-component systems such as standard fault trees, for
instance, may have up to 2%/? failure states. Fortunately, most of these failure states
are not important because infinite accuracy is never required. Finding the “important”
failure states is a principal task in computing system reliability, and several algorithms [4-
6, 9-11] have been developed to accomplish that task. These algorithms may require days
of computing time for even medium-sized systems, however, and our principal objective
in developing a new algorithm was to develop a faster method with which very large
systems could be addressed. The SHORTCUT algorithm finds the important cut sets of
any noncoherent fault tree, and its principal operations are outlined in the flow chart of

Figure 5.

In this chapter we will discuss each of the blocks of ure 5. We confine the discussion
of blocks 1 through 5 to this introductory section because they were addressed in earlier
sections. Individual sections will be devoted to the cut set reduction problem (Section 3.2),

to cut set truncation (Section 3.3), and to the bottom-up substitution process (Section 3.4).

3.1.1 TREE MODULARIZATION AND MODULE SELECTION

Referring to Figure 5, recall that a module in a fault tree (the parent) is a fault tree
whose gates and their interconnections are taken from the parent tree, and which can be
treated as independent from the rest of the parent tree. The top event of a module may
thus be viewed as a basic event of the parent tree. The existence of modules considerably
simplifies the evaluation of cut sets and the calculation of the probability of the top event

of the parent tree.
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l

IMPORTANT
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Figure 5. Simplified view of the SHORTCUT algorithm.

Many tree modularization methods exist {12], and these will not be discussed here.
The choice of which module is processed first is usually arbitrary, or at least very problem

dependent, and it will also not be treated here.
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3.1.2 MODULE LEVELING

Fault trees or their modules need not be leveled to apply the methods presented in this
report, but a leveled tree is easier to visualize and to process, and so it is usually worth
some effort searching for a tree’s levels, if it has any. The process of leveling the module

was discussed earlier, and a method was briefly described in Section 2.2.6.

3.1.3 MODULE REDUCTION AND LEVELING

Reducing the chosen module to a quasi-coherent tree is accomplished by the COHERE
algorithm, which was presented in the previous section. In Block 5 of Figure 5, the result-

ing tree is itself leveled by a method such as that discussed in Section 2.2.6.

3.2 Reducing Cut Sets: The SUBSET Algorithm

During the cut set extraction process, many sets are generated which are subsets of
other sets, or which contain other sets. Since P(AUB) = P(B) whenever any set B contains
another set A, there is no point storing A for further processing since it contributes nothing
to the final answer sought. Only minimal sets need to be retained, and nonminimal sets

must be reduced to minimal ones.

It turns out that most of the computational work required to extract cut sets is ex-
pended in this reduction process, because O(mknt) work must be expressed to reduce m
sets which are n-long, where k and £ are exponents whose size depends on the efficiency of
the reduction procedure. Indeed, there are typically O(2") cut sets that must be reduced,
and thus 0(2"‘"'“) work may be required: an enormous quantity which is very sensitive
to the value of k. Since k is essentially determined by the reduction procedure, it is crucial

that this procedure be efficient.

Typical procedures [5,6,11] require @(m?n) work, so that k = 2 and £ = 1 for these
methods. The purpose of this section is to present the SUBSET algorithm, which is only
linear in m, i.e., for which k = 1. When m = 100, for instance, SUBSET is thus 100 times
faster than other methods in reducing the m sets, and 2" times faster in computing all the

cut sets, whatever the value of n.

27



PISRESA T U s il NEs B

- e B e mi ead L m adw (AR @ ol e A it kI

ll

Using bit matrix and bit vector operations, SUBSET is considerably faster than any
other method, although this speed-up is somewhat dependent upon the word length of

serial computers used.

3.2.1 THE SUBSET ALGORITHM

The principles underlying SUBSET can be informally described as follows.

Starting with a collection (problem set) P of cut sets, and for any cut set S; € P,
P is partitioned into an increasing class {S;:}Q: of sets in P which cannot be contained in
Si at step j, and into a decreasing class {S}}c which can be contained in 5; at step j,
7=1,2,..., k;. I, for any step j, {S;:}(z =P -5; (or {S;:}C = 0), we are done, and S;
contains no sets in P (except itself, of course). If there is no such j, then {S} }c is the

class of sets contained in (absorbed by) S;, and these may be discarded.

We start with the coherent case, and we conclude with its extension to the noncoherent

case.

3.2.2 SUBSET: THE COHERENT CASE

Consider a set of simple sets P represented as a matrix:

C L C L N} C

1 J n
Sl
P = S2 S”=C“
S
m

with rows (simple sets) Si = (Si1, ..., Sijy ---, Sin), and columns C; = (Cj, ..., Cji,
..+, Cjm). In this matrix, entries in row i and column j are denoted by Sijy Si; €

{0, 1, —, 0}, and mean the following in the associated fault tree:
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Sij =0: component j is failed in cut set 1.

Si; =1 component j is working in cut set 1.
Si; = —: component j is irrelevant to cut set i.
Si; =0: cut set i is empty.

Now define the following:

Z; = ({j: Sij = 0}, <), the set of column indices whose associated columns have
a zero entry in position (row) i, ordered by the standard inequality ordering <.

Z; = ({i: Cji = 0}, <), the set of row indices whose associated rows have a zero
entry in position (column) j, ordered by the standard inequality ordering <.

Similarly for W; = ({j: Si; =1}, <) and W; = ({i: C};i =1}, <).

For two nonempty sets S, and Sy in P, the following simple fact can be easily derived
from earlier definitions and properties of simple sets.

FACT.

S ¢ Sy iff (3k) 3 (Sp=0ASu#0)V (Su=1ASu#1) . (22)

As discussed in our introduction, Equation (22) is the basis for the SUBSET algorithm
whose flowchart we now describe in Figure 6.

3.2.3 AN EXAMPLE

Consider the problem set

1 2 3 4 5

S, |0 - 0 - -

S, |~ - 0 0 -

P= S, |o 6o - - -
S, | — 0 - 0 0

S¢ |— 0 - 0 -
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No
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Figure 8. Flow chart of the SUBSET algorithm.
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Then, for S1: Z; = (1, 3)

Dy; =10 V

and S; has no subsets.

For Sy: Z2 = (3, 4)

and S2 has no subsets.

For 53: Z; = (1, 2)

0]
Dp={0|\
| —
and S3 has no subsets.
For Sg: Z4 = (2, 4, 5)
Dp=|0]|\
0
L 0

and S5 is possibly a subset of S4 at Step 2.
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Dy=Dgp\[C= |-\ [-]| = |- ,

0 0 0
L 0- _—J T
and S4 has no subsets.
For S5: Zs = (2, 4)
[ P [ — 7]
_ 0 _
Ds; = | 0 V - = |- ,
0 0 0
0 0 0

e - L e L -

and Sy is a subset of S5, and may be thrown away.

3.24 THE NONCOHERENT CASE

Extension to noncoherent problems is simple, as shown in the following extension of
the flowchart of Figure 7.

3.2.5 THE COMPLEXITY OF SUBSET

Using bit vector implementations, such as those available on Cray computers, the
complexity of SUBSET is linear in the number m of simple sets, and in the number n of
basic events or components of the system. Thus, C(SUBSET) = O(n+ m), a considerable
improvement over other methods such as FTAP [10] and SETS [5], as shown in Figure 8.
Such methods typically require O(m?n) computations, a significant increase. If we consider
a small problem where m = 1000, n = 100, SUBSET requires O(10°) computations,
whereas other methods require O(10®) computations, a much larger number. Actually, the
few tests which produced Figure 8 yielded a sublinear behavior, i.e., the complexity was
O(an + fm), a, B < 1. Our previous example, for instance, required only 16 bit vector

operations, whereas other methods would require O(m?n) = (0(125) operations.
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Figure 7. (continued)
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Fetch one-coordinates
Wl = <w“, s Wiy oo wu,>
Compute E, = E;, ,, V Cw"
E”= w ,n-k121>1
8. Sl has no subsets in P.

1-entries of E, No

correspond to ‘'
potential subsets

of Sl.
To 9.

Figure 7. (continued)
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l From 8.
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g-entries of Fl
correspond to
subsets of Sl

From From

Throw away S 8.
10.1 subsets of S, l J
-—

— N
2z
o

Done

Figure 7. Flow chart of the SUBSET algorithm for the noncoherent case.

This will, in fact, be the case in most practical systems, because #(Z;), the number of
elements in the zero sets Z;, will usually be much less than the number n of components
in the system. Furthermore, as subsets are found, they are removed from P, and thus,
progressively fewer simple sets in P have to be examined. Observe that 8 = 1 only if
there are no subsets. Also observe that a = 1 only if all sets in P consist only of zeros, an

obviously impossible situation.
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Figure 8. Comparison of SUBSET to other methods.

3.3 Cut Set Truncation: The TRUNC Algorithm

One effective way to speed up the computation of cut sets is to retain only those
expressions which are less then k-long, i.e., have fewer than k literals. Then, unless the
dual tree is used as discussed in Chapter 1, only at most 2%/2 expressions may need to be
found, but then only a lower bound on the system failure probability can be obtained since
it is impossible to assess the quantitative effects of throwing away expressions. Things
are even worse for noncoherent trees, since throwing away expressions or disjuncts as
the top event is approached may in fact increase the final probability. Throwing away a
complemented expression is equivalent to adding another expression, thereby increasing the
probability. This was the main argument for developing the COHERE algorithm, which
reduces the noncoherent tree before any approximations or truncations are made. It was
also the principal reason for computing the dual tree since then we get both an upper and

a lower limit on the correct failure probability.

Whereas various criteria for truncating expressions are discussed below, the current
version of SHORTCUT only includes a simplified version TRUNC, which throws away
expressions on the basis of length only. Such truncation is done at every AND gate and

limits every expression to be at most k-long, thereby assuring that all minimal cut sets
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which are at most k-long are retained by the time the top event is reached. Observe that,
since a simple set does not qualify as a cut set candidate until the top of the tree has
been reached, expressions which are discarded by this process are not cut sets, but only

ordinary simple sets.

Current methods reject simple sets either on probabilistic or on set-theoretic grounds.
Typically, a set is probabilistically rejected if its probability is less than a given rejection
threshold. Usually, basic events are assumed independent in this calculation and a set’s
probability is simply assumed to equal the product of the probabilities of its events. A
more tractable and popular method is to reject a set if its set-theoretic “size” (in the
sample space) is smaller than a reference size. A good measure of the smallness of a set
is the “length” of the set, that is the number of its non-don’t care entries. The length
of a Boolean expression with no redundant symbols, terms, or literals is thus simply the
number of literals appearing in the expression, and any expression exceeding a given length

is thus set-theoretically too small to be retained.

A careful analysis of both methods reveals that they can be very misleading, and can
lead to retaining too many sets and to rejecting important ones. The principal reason is
that it is not the individual probability or size of sets that matters, but the contribution
they make to the overall system reliability estimate. This is a differential sensitivity issue
which can only be settled when the effects of rejecting any combination of sets are known,

an obviously impossible task.

We attempt to approximate such an approach in this section, only to determine where
it leaves us in revealing weaknesses of current methods in a quest for better ways. It was
with some relief that we discovered that current truncation methods are in fact consistent
with the correct view, at least in the first order, and we demonstrate that in the next

section.

3.3.1 THE TRUNCATION RULE TRUNC

Our method is based on the fact that the contribution of a set B to a union A U B
relative to a probability measure P is simply P(B — A), the probability of the set of points
in B not in A.

When a collection {S;: ¢ =1, ..., m} is considered, we rank each set S; in accordance
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with its contribution to the total union U™ ,S;, which we approximate by the “average”

contribution F(S;) = m™! Y1 P(Si - S))

The probabilities P(S; — S;) are difficult to compute, however, because the contribu-
tions of S; over §; in each coordinate are not disjoint. But recall from our mathematical

introduction that

si-si=U {s.-n Eu ke DOM(S,-/S,-)} : (23)

where Ejk is the complement of the projection of S; on the kth coordinate. Also recall
that S; = NE_, Ejk-

We still face the problem that the sets (5; N —E—jk) in Equation (23) are not disjoint,
and thus P(S; — S;) # ZP(S:N Ej;). However, a slight transformation in the members of
S; — S; is sufficient to obtain a disjoint representation of §; — S; as we now show. Each
set E_.,-k may be replaced by the set

Hj, = Ejk n{Eﬂ , kL€ DOM(S,‘/SJ')}
<k
without affecting the union U {S‘- NE;;} defined earlier in Equation ( 23). The sets Hj;

are disjoint, as we illustrate in the next example.

Ezample. Considertwosets A = (1, —, —,1,—, —, 1)and B = (-1, -, —1,- =)
Then DOM(B|A| = {1, 4, 7}, and

(07 1’ ) _11, ) _)=B1
B—A=U (—71a—’071a—,—):BZ
(—,17_7 _alv ™ O)=B3

If we substitute two sets By = (1,1, —, 0,1, —, —) and By=(1,1,-,1,1, —,0) for
B; and Bj, respectively, we get

3 3
B-A=|J B:=)_ B , (24)

where B| = B;.
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The sets B! are thus disjoint and we use the symbol ¥ to denote disjoint unions.

Returning to the H;.’s, we now get (indices not important).

U s =) Hi (25)

Si-8;=J{5:( B k€ € DOM(S/S;)}

and

=S {Si) Hix: kL € DOM (5/5;)}
- Z{S'ﬂ Ejn ({Ee k.t € DOM(S,-/S,-)}} . (26)

<k

We have obtained a convenient form for the probability of §; — S;:

P(Si—-8)=). {P (s.-ﬂ Epi() {Eic kte DOM(S,-/S,-)})} . (27)

<k

If the basic events (variables)—and thus the elementary simple sets—are independent,

P (Siﬂ Ex|) Ejt) = P(S:)P(E;) [[{P(Eje;: k, € € DOM(Si/S;)} . (28)

<k <k

Combining Equations (28) and (27),

P(Si~ 5;) =Y {P(S)P(E;x) [T{P(Bse): k. ¢ € DOM(Si/S;)}} - (29)
<k

But P(E]-k) ~ 1, at least for reliable coherent systems, and Hf;l P(E;;) < P(Ej) for

typical systems, reliable or not. Thus

P(S; - 8;) = P(Si) , (30)
and

39



F(S;) = %Z P(Si-S;) = P(S) . (31)

i=1

This formally confirms that, for coherent and reliable systems, the probabilities of a simple

set are an excellent measure of the contribution of the set to the overall probability.

For noncoherent systems, P(E;;) % 1 and HLI P(E;;) € P(Ej)) necessarily, and all

the terms in Equation (30) reduce to the form

F(S,') = f: P(S,' - SJ') . (32)
1=1

1
m

When basic variables or events E; are independent, and when their probabilities are
comparable in magnitude, P(E; N E;) < P(E;) usually, particularly if the associated
system is at least moderately reliable. In such cases, the shortness of a simple set 15 a
good indicator of that set’s relative importance, where a simple set is shorter than another
if it has more don’t cares, or less non-don’t cares. Recall that a shorter simple set is
usually larger set-theoretically than a longer simple set, i.e., has a larger probability value.
Thus, an effective and accurate way to rank simple sets—and to reject simple sets during
the cut-set computation process—is to rank them by length, shortest sets first. Since the
SHORTCUT algorithm can only increase the length of simple sets as the top variable (top
of the tree) is approached, limiting sets to those of length at most k will guarantee that
all cut sets of length at most k are produced, and no more, and this is precisely what
algorithm TRUNC does.

3.4 Bottom-Up Substitution: The SHORTCUT Algorithm

The SHORTCUT algorithm is a bottom-up substitution algorithm [6,11] which re-
places intermediate events in a leveled quasi-coherent fault tree with an expression involv-
ing basic events only, in accordance with the Boolean operations encountered at each gate
of the tree. Starting with level 1, each gate is replaced by the appropriate expression for
its output until the top variable or event is reached. During this process, various reduction
and truncation steps are taken at each gate to avoid carrying along unnecessary simple

sets. These steps are based on five Boolean reduction rules or tautologies:
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R, : A-B+ A-B = A (Exhaustion)

Ry : AB+A=A (Absorption)

R;: A-A=A (Idempotence)
Ry: A=A (Double Negation)
Rs: A-B-A=10 (Exclusion)

Even in moderately complicated noncoherent fault trees, intermediate expressions
rarely have the form suitable for applying rule R;, and this rule was not built into our

procedure.

The entire procedure may be described by what is done at each OR gate and at each
AND gate. In Section 3.4.1, we discuss OR gate operations, and in Section 3.4.2., we
discuss AND gates. Finally in Section 3.4.3., we present a flowchart of SHORTCUT.

3.4.1 OPERATIONS AT OR GATES

Consider some OR level Gy C G* in a quasi-coherent leveled tree. The jth gate gy; at
that level has k(¢, j) inputs Ip; = {Ipe: k=1, ..., k(¢, 7)}.

Each input is itself a reduced collection Syji = {Sejrg: ¢ =1, ..., q(4, j, k)} of simple
sets, and these collections must now be collectively reduced using the rule A-B+ 4 = A
embodied in SUBSET. The only operation at each OR gate is to reduce the collection of

simple sets involved in the union

k(63) q(L.3.k)

Oy = U U Stikq
k=1 g=1

which represent the output of the gate. Once reduced, this collection replaces the OR gate

and the process continues with the next OR gate gy(;, ;) until level G, is completed.

Observe that, in a typical situation, there is no need to compare or reduce sets asso-

ciated with any one terminal, since these have been previously reduced in the tree, as we

shall see when we discuss the overall SHORTCUT algorithm. Thus sets at any terminal
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must only be reduced relative to sets at another terminal, and this speeds up the reduction

process considerably.

No truncation is necessary at OR gates, since the OR operation does not alter the

length or size of its input sets. (Rare cases of the form A-B + A-B are neglected here.)
3.4.2 OPERATIONS AT AND GATES

Consider now some AND level G; C G’ and its jth gate g,; with its k(¢, j) inputs
Ijj = {Ijx: k =1,...,k(¢ j)}. Similarly to OR gates, each input is itself a reduced
collection S¢jk = {Sejrgt =1, ..., q(&, j, k)}, as shown in Figure 9.

k(,)) qd,} k)

0, = A V s

1ik
k=1 q-l ikq

T

I I 1

11 1]k kAL " S

1)k

Figure 9. AND gates transform reduced collections of simple sets into their product.

Input collections (“terminals”) are AND-ed pairwise, smallest collections first. The
result of AND-ing two collections is a new collection whose length is considered in se-
lecting a new pair, although the product of two collections will usually be larger than
the collections yet to be multiplied. Consider two such collections § = {S), ..., Su} and
T={T1,...,Tp}. Then U;'-'=1Tj NUL, S = Ul_,Ul,; T; NS, and this reveals our ap-

proach. Using bit vector operations, u new collections {T;Si, ..., T;S,} are produced,
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each obtained by operating on the columns of S, one column at a time, as we did in the

SUBSET algorithm. Let us illustrate that with an example.

EXAMPLE. Let

1 2 3 4 5
S 1 1= 0 —_ 1 —
S = 52 1 0 0 -— -
S s | — — 1 -— —_
S 4 1 - 1 - 1
and
d, d, d, d, d
T, | 1 - - 0 1
Y
|- 1 - 1 1
.|t - 1 - -

Then §-T = ($1US2US3US) (MU UT3 UTy) = TS UT2S U T35 UTLS, and four
collections of sets are produced, one for each Tj. But before we show how these products
are computed, observe that certain sets in S and T are disjoint, like ) and T}, and S and
T;. Products §; NT and S4NT; are thus empty and can be thrown away, and this is done
first. Using bit vector operations, vectors (columns) ¢; and d; are compared to check for
complementing entries. Any set in S which complements at least one set in T in at least
one entry is neglected in the corresponding product T; N S. Consider only the collection
T',NS=T1N{Sy, ..., S4}. Then 1N S = T; N (S — S1), a smaller collection. Recalling
the definition of products of simple sets, T} N S is thus produced as follows:
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1. Remove S; from S, obtaining S’ = {53, S3, S4}.

2. Set coordinate c; of §’ to 1, the value of the first coordinate of
Ti(dy).

3. Set coordinate c4 of S’ to 0, the value of the fourth coordinate
(d4) of T].

4. Set coordinate cs of S' to 1, the value of the fifth and last

coordinate of T.

5. Truncate the new collection T3 N S’ with TRUNC.
6. Reduce resulting collection with SUBSET.
7. Store these minimal sets as collection S, .

8. Continue with T.

Note also that individual products T; N S; never need to be computed by this method,
resulting in a considerable complexity reduction. Indeed, while other methods require
O(mgmpn) operations for multiplying (AND-ing) S and T, our method requires only
O(mrn) operations, a reduction of orders of magnitude (n is the number of basic variables

(events) in the system).

Note also that there is no need for an additional idempotency test A-A = A, since this

is done automatically in our simple set framework.

Returning to the general case, our example illustrates what is done and we conclude

our discussion in the next section where a flowchart of SHORTCUT is presented.

3.43 FLOW CHART OF SHORTCUT
In this section, we present a flowchart of the overall SHORTCUT algorithm, which is

shown in Figure 10. For simplicity, we use the notation and subroutines developed earlier,

and we provide below any comments appropriate for the blocks in the flowchart.
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FT, = <G, I >,

l Fault tree

Modularize
tree

l

Select and
level module

|

Reduce module
to quasi-coherent
leveled tree

Quasi-coherent

leveled fault tree
LF = <G, I,L,>

I -0

From 27.

I -1 +1

To 8
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l From 7.

> joj+1

l

Compute set union list
k(l,j) qd,]), k)

L, = U U Sijkq

k=1 q=1

Call SUBSET to
reduce L, |

lu‘i

Throw away gate
11. g” and put Lll;
in location O”

10.

13:

01 ] has desired

cut sets.
No

To 14.

Figure 10. (continued)
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14.|1 -1 +1
15.] j >0
From 7. l
+ 16. . .
—» j o j+1
+ lLu
From 26.
Rank terminal set
17.
lj’ 2
LTS tjk(t,J)) |
18.
To 19.

Figure 10. (continued)
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19.

From 18.
v

» r-r+1

A A
. » TR
Compute E’jr = E”(l__l)AEI.ir
20. .
E, [ E, j1
l Eljr
21.] Throw away any empty products
22.| Truncate resulting products
[ T
EI,Ir
»T
23.| Reduce E”l_ with SUBSET

4—— TRUNC

No

25.

Yes

Throw away gate

» TR
g and put E”r

in location O”

l To 26.
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To 16.
From 25.

No

To S.

.

Location O, | has
the desired cut sets.

Figure 10. Flow chart of the overall SHORTCUT algorithm.

Block 2

G =GTUG*, Ly = {Gy: € = 1,...,L} and each level G, has gates G, =
{gll""agljy-'-')gllt}‘

Block 7
Is level under consideration an OR level?
Block 8

Each gate g,; has set of inpﬁts (terminals) Ip; = {Iyjx: k=1, ..., k({,7)}.
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Block 9
Sejkq is the gth simple set (disjunct) at the kth terminal (input) of gate j at level £.
Block 10

Observe that we have not incorporated an inner loop to prevent sets at a given termi-
nal of the OR gate from being compared (again) against each other, as we suggested in
Section 3.4.1. Clearly, if a gate has many terminals with only a few sets at each terminal,
such a test and control loop would considerably lessen the reduction work required at the

gate. This feature will be included when SHORTCUT is implemented on the computer.
Block 12

Has last gate at level £ been processed?
Block 17

The current ranking criterion is the length |Eyj.| of expressions Ey;, at each terminal
. . A . .
(input) r. Iy, precedes Iy, iff |Eygjr| < |Egj,l, where |Egjz| = quantity of simple sets
(disjuncts) at terminal Ip;; of gate gy;.

Block 20

AND expression Eyj, at terminal r with previously AND-ed, truncated (T) and reduced
(R) expression Eyj(,_y)-

Block 23
Same comment as Block 10.
Block 24

Have all AND gate terminals been AND-ed?
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Block 26

Have all gates at level £ been processed?
Block 27

Has top level of tree been reached?

In the next and final section, we discuss the computational complexity of the SHORT-
CUT algorithm.

3.4.4 COMPLEXITY OF SHORTCUT

In this section, we develop a worst-case expression for the computational complexity
of the SHORTCUT algorithm. For this analysis, we make the following fault tree assump-

tions.

We assume a quasi-coherent fault tree which has Ng"' OR gates and N, AND gates.
The total number of gates in the tree is therefore Ny = N} + N;. Each gate is assumed to
have p inputs (p input collections of simple sets, or p “wires”). The length of each simple
set (the number of its non-don’t care entries) is assumed to equal k, the truncation value
specified in advance by the user. Since many sets will be shorter, this is thus a worst-case
a;sumption because, with our method, shorter sets are easier to manipulate than longer

ones.

The discussion is presented in three parts. First, we discuss the work required at OR
gates (Section 3.4.4.1). Then, we discuss the complexity of processing AND gates (Section
3.4.4.2). Finally, we determine the overall complexity of SHORTCUT in Section 3.4.4.3.

3.4.41 Computational Work at OR Gates.

We make the worst-case assumption that all possible k-long sequences (simple sets)
are fed to each of the p* gate input terminals. There are (Z) = k'_(nﬁlk_)' such sets. For

k
usual fault trees, n > k, and k is small. Then (:) ~ %t is a very good approximation, and

() > ()
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At each OR gate, the SUBSET algorithm reduces the totality p* x (}) of the input

sets, and this is the only operation performed at such gates.

Observe that this is also a worst-case estimate in another sense. In Section 3.4.1, and in
the SHORTCUT flow chart of Section 3.4.3, we have indicated the need to further stream-
line SUBSET by including the simple but very effective control loop which would prevent
sets at a given input terminal from being compared with other sets at that terminal. Since
this feature is not currently part of SHORTCUT, we have neglected the computational

savings which it contributes.

Referring to our discussion of SUBSET in Section 3.2, we note that the processing of
each OR gate thus requires n x p* x ',':—.: =pt x operatlons For all the N," OR gates,

k
a total of N} = pt x N;’ X "k‘!ﬂ operations would at most be required.

It follows from our earlier observation in the introduction of Section 3.2 that, for other
Rl 2
methods, at least p* x Ng"’ (lk;) operations would be required, a much larger amount

of work.
3.4.4.2 Computational Work at AND gates

The first step at each AND gate is the same as that executed for OR gates: collectively
reduce all input sets with SUBSET. Thus p* x N %5 operatxons would at most be required.

For the AND-ing process itself assume again that each set has k non-don’t care entries,

and that each terminal is fed 7y sets, as before.

Multiplying one terminal collectlon of Iy > sets w1th another set requires k£ vector oper-

ations only. Multiplying with Iy other sets require 24— e operations, which produces a new
k

collection with at most J; sets again, after set truncation with TRUNC. This truncation

process is trivial and cheap, and does not increase the work significantly.

Accounting for all p° terminals, we obtain that at most p’ k' - ANDA mg operatlons

are required at each AND gate.

operations are thus required.
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The resulting products must now be reduced as usual, and an additional p'Ng'%J!r—l

would be required. The total number of operations which could thus be required at AND

gates is thus in the worst case

k+1 k+1 k+1 k+1
. PR (] P e ape 1 P (2

3.4.4.3 Overall Complexity of SHORTCUT

Combining the total work required at OR gates and AND gates, for a fault tree with
Ng+ OR gates and N, AND gates, the total number of operations required by SHORTCUT

is at most

+ . + N+ )
Ne= NG+ N, = (N} +3p'N,) o (34)

The complexity of SHORTCUT is thus linear in the number of gates and terminals.
There is no way to avoid the polynomial behavior in n, however, since all k-long sets may

have to be generated.

In conclusion, a major computational improvement contributed by the SHORTCUT

k+1Y) 2 k+1
algorithm is the reduction of the squared term (1‘—,:—) to the linear term l,:—
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Chapter 4

CONCLUSIONS AND FUTURE WORK

SHORTCUT is a new method for finding the k-long cut sets of an arbitrary noncoherent
fault tree. Given that the predominant amount of work in finding cut sets is done at
the reduction stage, the method is based on a new vector algorithm—called SUBSET—
for reducing sets. For typical large problems, this new algorithm is faster than existing
algorithms by orders of magnitude, but does depend to some extent on the architecture of

the computer used.

Two activities must yet be accomplished. First, SHORTCUT must be implemented
and tested as a whole system, not just its important parts. Second, the SUBSET algorithm
must be streamlined to exploit the fact that simple sets (expressions) at a given gate input
need not be reduced (compared) relative to one another. For fault trees whose gates have

many inputs, this will lead to further significant gains in computational efficiency.
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Glossary

m
\__ S,  Unlonofnsets{S,,.., S

-

m

('S, Intersectionof msets{S,, ..., S}
j=1
3 There exists.
itf If, and only if.

n

V A Disjunction (ORing) of n Boolean expressions
b=1 (A, ... A}

n
A A Conjunction (ANDIing) of m Boolean
=1 expressions (A, ..., A }.

ACG) Logical AND operation.

V(+) Logical OR operation.

1(=) Logical complementation symbol.

Boolean complement of variable E,
expresslon E, or simple set E.

'31 Boolean complement of coordinate |
entry e.

- Subset symbol.

g Proper subset symbal.
Such that.

Ax B Cartesian product of two sets A and B,
AxBz={(a,b): ac A be B}

€ Element of.

Vv For all.

- implication.
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